Problem 1.20

Sportscar

A sportscar, Electro-Fiasco I, can accelerate uniformly to $100 \mathrm{~km} / \mathrm{h}$ in 3.5 s . Its maximum braking rate cannot exceed 0.7 g . What is the minimum time required to go 1.0 km , assuming it begins and ends at rest?

Solution

The maximum speed of the sportscar in meters per second is

$$
v=100 \frac{1 \mathrm{~h}}{\text { K }} \times \frac{1 \text { K }}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{k}}=\frac{250}{9} \frac{\mathrm{~m}}{\mathrm{~s}},
$$

so its uniform acceleration in meters per second squared is

$$
a=\frac{\frac{250}{9} \frac{\mathrm{~m}}{\mathrm{~s}}}{3.5 \mathrm{~s}}=\frac{500}{63} \frac{\mathrm{~m}}{\mathrm{~s}^{2}} .
$$

Separate the sportscar's motion into three parts as shown in the figure below.

The Path from A to B

Apply the kinematic formula,

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2},
$$

to the sportscar's path from A to B to find how far the sportscar travels.

$$
x_{A B}=0+0+\frac{1}{2}\left(\frac{500}{63}\right)(3.5)^{2}=\frac{875}{18} \mathrm{~m} \approx 48.6 \mathrm{~m}
$$

We conclude that the sportscar travels about 48.6 meters in 3.5 seconds as it accelerates from A to B. Let $t_{A B}=3.5$ seconds.

The Path from C to D

Apply the kinematic formula,

$$
v=v_{0}+a t,
$$

to the sportscar's path from C to D to find how long it takes for the sportscar to come to rest.

$$
\begin{aligned}
& 0=\frac{250}{9}+(-0.7 g) t_{C D} \\
& \quad(0.7 g) t_{C D}=\frac{250}{9} \\
& t_{C D}=\frac{2500}{63 g} \mathrm{~s} \approx 4.05 \mathrm{~s}
\end{aligned}
$$

Apply the kinematic formula,

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

to the sportscar's path from C to D to find how far the sportscar travels before coming to rest.

$$
\begin{gathered}
0=\left(\frac{250}{9}\right)^{2}+2(-0.7 g) x_{C D} \\
(1.4 g) x_{C D}=\left(\frac{250}{9}\right)^{2} \\
x_{C D}=\frac{312500}{567 g} \mathrm{~m} \approx 56.2 \mathrm{~m}
\end{gathered}
$$

We conclude that the sportscar travels about 56.2 meters in 4.05 seconds as it decelerates from C to D.

The Path from B to C

Since the whole track is 1000 meters long, the distance the sportscar travels from B to C can be determined.

$$
\begin{gathered}
x_{A B}+x_{B C}+x_{C D}=1000 \\
\frac{875}{18}+x_{B C}+\frac{312500}{567 g}=1000 \\
x_{B C} \approx 895.2 \mathrm{~m}
\end{gathered}
$$

Apply the kinematic formula,

$$
x=v t,
$$

to the sportscar's path from B to C to find how long it takes for the sportscar to reach C .

$$
\begin{aligned}
895.2 & =\frac{250}{9} t_{B C} \\
t_{B C} & \approx 32.2 \mathrm{~s}
\end{aligned}
$$

We conclude that the sportscar travels about 895.2 meters in 32.2 seconds as it goes from B to C. Therefore, the minimum time it takes for the sportscar to travel 1 km is

$$
t_{A B}+t_{B C}+t_{C D} \approx 39.8 \text { seconds. }
$$

