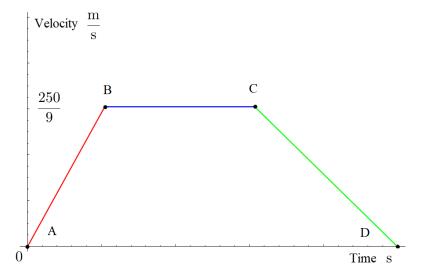
Problem 1.20

Sportscar

A sportscar, Electro-Fiasco I, can accelerate uniformly to 100 km/h in 3.5 s. Its maximum braking rate cannot exceed 0.7g. What is the minimum time required to go 1.0 km, assuming it begins and ends at rest?

Solution


The maximum speed of the sportscar in meters per second is

$$v = 100 \frac{200}{\text{M}} \times \frac{1 \text{M}}{60 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ s}} \times \frac{1000 \text{ m}}{1 \text{ mag}} = \frac{250}{9} \frac{\text{m}}{\text{s}},$$

so its uniform acceleration in meters per second squared is

$$a = \frac{\frac{250}{9} \frac{\text{m}}{\text{s}}}{3.5 \text{ s}} = \frac{500}{63} \frac{\text{m}}{\text{s}^2}.$$

Separate the sportscar's motion into three parts as shown in the figure below.

The Path from A to B

Apply the kinematic formula,

$$x = x_0 + v_0 t + \frac{1}{2} a t^2,$$

to the sportscar's path from A to B to find how far the sportscar travels.

$$x_{AB} = 0 + 0 + \frac{1}{2} \left(\frac{500}{63} \right) (3.5)^2 = \frac{875}{18} \text{ m} \approx 48.6 \text{ m}$$

We conclude that the sportscar travels about 48.6 meters in 3.5 seconds as it accelerates from A to B. Let $t_{AB} = 3.5$ seconds.

The Path from C to D

Apply the kinematic formula,

$$v = v_0 + at,$$

to the sportscar's path from C to D to find how long it takes for the sportscar to come to rest.

$$0 = \frac{250}{9} + (-0.7g)t_{CD}$$

$$(0.7g)t_{CD} = \frac{250}{9}$$

$$t_{CD} = \frac{2500}{63q} \text{ s} \approx 4.05 \text{ s}$$

Apply the kinematic formula,

$$v^2 = v_0^2 + 2a\Delta x,$$

to the sportscar's path from C to D to find how far the sportscar travels before coming to rest.

$$0 = \left(\frac{250}{9}\right)^2 + 2(-0.7g)x_{CD}$$

$$(1.4g)x_{CD} = \left(\frac{250}{9}\right)^2$$

$$x_{CD} = \frac{312500}{567g} \; \mathrm{m} \approx 56.2 \; \mathrm{m}$$

We conclude that the sportscar travels about 56.2 meters in 4.05 seconds as it decelerates from C to D.

The Path from B to C

Since the whole track is 1000 meters long, the distance the sportscar travels from B to C can be determined.

$$x_{AB} + x_{BC} + x_{CD} = 1000$$

$$\frac{875}{18} + x_{BC} + \frac{312500}{567g} = 1000$$

$$x_{BC} \approx 895.2 \text{ m}$$

Apply the kinematic formula,

$$x = vt$$
.

to the sportscar's path from B to C to find how long it takes for the sportscar to reach C.

$$895.2 = \frac{250}{9} t_{BC}$$

$$t_{BC} \approx 32.2 \text{ s}$$

We conclude that the sportscar travels about 895.2 meters in 32.2 seconds as it goes from B to C. Therefore, the minimum time it takes for the sportscar to travel 1 km is

$$t_{AB} + t_{BC} + t_{CD} \approx 39.8$$
 seconds.